Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3508, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346996

RESUMO

The management of mosquito resistance to chemical insecticides and the biting behaviour of some species are motivating the search for complementary and/or alternative control methods. The use of plants is increasingly considered as a sustainable biological solution for vector control. The aim of this study was to evaluate the biological effects of the essential oil (EO) of Lippia alba harvested in Abidjan (Côte d'Ivoire) against Anopheles gambiae and Aedes aegypti mosquitoes. Phytochemical compounds were identified by GC-MS. Knockdown and mortality were determined according to the WHO test tube protocol. Contact irritancy was assessed by observing the movement of mosquitoes from a treated WHO tube to a second untreated tube. Non-contact repellency was assessed using a standardised high-throughput screening system (HITSS). Blood meal inhibition was assessed using a membrane feeding assay treated with EO. The EO was identified as the citral chemotype. The EO gave 100% KD60 in both species at a concentration of 1%. Mortalities of 100% were recorded with An. gambiae and Ae. aegypti at concentrations of 1% and 5% respectively. The highest proportions of females escaping during the contact irritancy test were 100% for An. gambiae at 1% concentration and 94% for Ae. aegypti at 2.5% concentration. The 1% concentration produced the highest proportions of repelled mosquitoes in the non-contact repellency tests: 76.8% (An. gambiae) and 68.5% (Ae. aegypti). The blood meal inhibition rate at a dose of 10% was 98.4% in Ae. aegypti but only 15.5% in An. gambiae. The citral chemotype of L. alba EO has promising biological effects in both species that make it a potentially good candidate for its use in mosquito control. The results obtained in this study encourage the further evaluation of L. alba EOs from other localities and of different chemotypes, under laboratory and field conditions.


Assuntos
Monoterpenos Acíclicos , Aedes , Anopheles , Repelentes de Insetos , Inseticidas , Lippia , Óleos Voláteis , Animais , Feminino , Óleos Voláteis/farmacologia , Aedes/fisiologia , Mosquitos Vetores , Côte d'Ivoire , Inseticidas/farmacologia , Repelentes de Insetos/farmacologia , Controle de Mosquitos/métodos
2.
Front Physiol ; 15: 1331098, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348224

RESUMO

Background: During the process of elongation, the embryo increases in size within the uterus, while the extra-embryonic tissues (EETs) develop and differentiate in preparation for implantation. As it grows, the ovoid embryo transforms into a tubular form first and then a filamentous form. This process is directed by numerous genes and pathways, the expression of which may be altered in the case of developmental irregularities such as when the conceptus is shorter than expected or when the embryo develops after splitting. In bovines, efforts to understand the molecular basis of elongation have employed trophoblastic vesicles (TVs)-short tubular EET pieces that lack an embryo-which also elongate in vivo. To date, however, we lack molecular analyses of TVs at the ovoid or filamentous stages that might shed light on the expression changes involved. Methods: Following in vivo development, we collected bovine conceptuses from the ovoid (D12) to filamentous stages (D18), sectioned them into small pieces with or without their embryonic disc (ED), and then, transferred them to a receptive bovine uterus to assess their elongation abilities. We also grew spherical blastocysts in vitro up to D8 and subjected them to the same treatment. Then, we assessed the differences in gene expression between different samples and fully elongating controls at different stages of elongation using a bovine array (10 K) and an extended qPCR array comprising 224 genes across 24 pathways. Results: In vivo, TVs elongated more or less depending on the stage at which they had been created and the time spent in utero. Their daily elongation rates differed from control EET, with the rates of TVs sometimes resembling those of earlier-stage EET. Overall, the molecular signatures of TVs followed a similar developmental trajectory as intact EET from D12-D18. However, within each stage, TVs and intact EET displayed distinct expression dynamics, some of which were shared with other short epithelial models. Conclusion: Differences between TVs and EET likely result from multiple factors, including a reduction in the length and signaling capabilities of TVs, delayed elongation from inadequate uterine signals, and modified crosstalk between the conceptus and the uterus. These findings confirm that close coordination between uterine, embryonic, and extra-embryonic tissues is required to orchestrate proper elongation and, based on the partial differentiation observed, raise questions about the presence/absence of certain developmental cues or even their asynchronies.

3.
Microbiol Spectr ; 10(6): e0339222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36445077

RESUMO

Paratuberculosis is a chronic infection of the intestine, mainly the ileum, caused by Mycobacterium avium subsp. paratuberculosis in cattle and other ruminants. This enzootic disease is present worldwide and has a negative impact on the dairy cattle industry. For this subspecies, the current genotyping tools do not provide the needed resolution to investigate the genetic diversity of closely related strains. These limitations can be overcome by the application of whole-genome sequencing (WGS), particularly for clonal populations such as M. avium subsp. paratuberculosis. The purpose of the present study was to undertake a WGS analysis with a panel of 200 animal field M. avium subsp. paratuberculosis strains selected based on a previous large-scale longitudinal study of Prim'Holstein and Normande dairy breeds naturally infected with M. avium subsp. paratuberculosis in the West of France. The pangenome analysis revealed that M. avium subsp. paratuberculosis has a closed pangenome. The phylogeny, based on alignment of 2,786 nonhomoplasic single nucleotide polymorphisms (SNPs), showed that the strain population is structured into three clades independently of the cattle breed or geographic distribution. The increased resolution of phylogeny obtained by WGS confirmed the homoplasic nature of the markers variable-number tandem repeat (VNTR) and short sequence repeat (SSR) used for M. avium subsp. paratuberculosis genotyping. These phylogenetic data also revealed independent introductions of the different genotypes in two main waves since at least 2003. WGS applied to this sampling demonstrated the presence of mixed infections in herds and at the individual animal level. Collectively, the phylogeny results inferred with French isolates compared to M. avium subsp. paratuberculosis isolates from around the world suggest introductions of M. avium subsp. paratuberculosis genotypes through the animal trade. Relationships between genetic traits and epidemiological data can now be investigated to better understand transmission dynamics of the disease. IMPORTANCE Mycobacterium avium subsp. paratuberculosis causes Johne's disease in ruminants, which is present worldwide and has significant negative impacts on the dairy cattle industry and animal welfare. Prevention and control of M. avium subsp. paratuberculosis infection are hampered by knowledge gaps in strain virulence, genotype distribution, and transmission dynamics. This work has revealed new insights into M. avium subsp. paratuberculosis strains currently circulating in western France and how they are related to strains circulating globally. We applied whole-genome sequencing (WGS) to obtain comprehensive information on genome evolution and discrimination of closely related strains. This approach revealed the history of M. avium subsp. paratuberculosis infection in France, refined the pangenomic characteristics of M. avium subsp. paratuberculosis, and demonstrated the existence of mixed infection in animals. Finally, this study identified predominant genotypes, which allow a better understanding of disease transmission dynamics. This information will facilitate tracking of this pathogen on farms and across agricultural regions, thus informing transmission pathways and disease control points.


Assuntos
Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Bovinos , Mycobacterium avium subsp. paratuberculosis/genética , Paratuberculose/epidemiologia , Paratuberculose/microbiologia , Filogenia , Estudos Longitudinais , Ruminantes
4.
Malar J ; 21(1): 271, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36163024

RESUMO

BACKGROUND: Every evening, chimpanzees (Pan troglodytes) build a sleeping platform so called "nest" by intertwining branches of tree. Most of chimpanzees' communities studied have a preference for tree species in which they nest. As female mosquitoes are feeding on the blood of their host at nighttime, chimpanzees may prevent being disturbed and bitten by mosquitoes by selecting tree species having properties to repel them. METHODS: To test the hypothesis that chimpanzees choose tree species for their aromatic properties, data related to 1,081 nesting trees built between 2017 and 2019 in the Sebitoli community of Kibale National Park (Uganda) were analysed. The 10 most used trees were compared to the 10 most common trees in the habitat that were not preferred for nesting. Leaves from the 20 trees species were collected and hydro-distillated to obtain essential oils and one of the by-products for behavioural bioassays against females of the African mosquito, Anopheles gambiae. RESULTS: Sebitoli chimpanzees showed tree preferences: 10 species correspond to more than 80% of the nesting trees. Out of the essential oil obtained from the 10 nesting trees, 7 extracts for at least one concentration tested showed spatial repellency, 7 were irritant by contact and none were toxic. In the other hand, for the abundant trees in their habitat not used by chimpanzees, only 3 were repellent and 5 irritants. DISCUSSION AND CONCLUSION: This study contributes to evidence that chimpanzees, to avoid annoying mosquitoes, may select their nesting trees according to their repellent properties (linked to chemical parameters), a potential inspiration for human health.


Assuntos
Anopheles , Óleos Voláteis , Animais , Feminino , Humanos , Irritantes , Pan troglodytes , Parques Recreativos , Árvores , Uganda
5.
PLoS One ; 17(8): e0270012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35976909

RESUMO

Managing Salmonella enterica Enteritidis (SE) carriage in chicken is necessary to ensure human food safety and enhance the economic, social and environmental sustainability of chicken breeding. Salmonella can contaminate poultry products, causing human foodborne disease and economic losses for farmers. Both genetic selection for a decreased carriage and gut microbiota modulation strategies could reduce Salmonella propagation in farms. Two-hundred and twenty animals from the White Leghorn inbred lines N and 61 were raised together on floor, infected by SE at 7 days of age, transferred into isolators to prevent oro-fecal recontamination and euthanized at 12 days post-infection. Caecal content DNA was used to measure individual Salmonella counts (ISC) by droplet digital PCR. A RNA sequencing approach was used to measure gene expression levels in caecal tonsils after infection of 48 chicks with low or high ISC. The analysis between lines identified 7516 differentially expressed genes (DEGs) corresponding to 62 enriched Gene Ontology (GO) Biological Processes (BP) terms. A comparison between low and high carriers allowed us to identify 97 DEGs and 23 enriched GO BP terms within line 61, and 1034 DEGs and 288 enriched GO BP terms within line N. Among these genes, we identified several candidate genes based on their putative functions, including FUT2 or MUC4, which could be involved in the control of SE infection, maybe through interactions with commensal bacteria. Altogether, we were able to identify several genes and pathways associated with differences in SE carriage level. These results are discussed in relation to individual caecal microbiota compositions, obtained for the same animals in a previous study, which may interact with host gene expression levels for the control of the caecal SE load.


Assuntos
Doenças das Aves Domésticas , Salmonelose Animal , Animais , Galinhas/genética , Galinhas/microbiologia , Humanos , Tonsila Palatina , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Salmonella enteritidis/genética , Transcriptoma
6.
Genet Sel Evol ; 54(1): 7, 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093028

RESUMO

BACKGROUND: Salmonella Enteritidis (SE) is one of the major causes of human foodborne intoxication resulting from consumption of contaminated poultry products. Genetic selection of animals that are more resistant to Salmonella carriage and modulation of the gut microbiota are two promising ways to decrease individual Salmonella carriage. The aims of this study were to identify the main genetic and microbial factors that control the level of Salmonella carriage in chickens (Gallus gallus) under controlled experimental conditions. Two-hundred and forty animals from the White Leghorn inbred lines N and 61 were infected by SE at 7 days of age. After infection, animals were kept in isolators to reduce recontamination of birds by Salmonella. Caecal contents were sampled at 12 days post-infection and used for DNA extraction. Microbiota DNA was used to measure individual counts of SE by digital PCR and to determine the bacterial taxonomic composition, using a 16S rRNA gene high-throughput sequencing approach. RESULTS: Our results confirmed that the N line is more resistant to Salmonella carriage than the 61 line, and that intra-line variability is higher for the 61 line. Furthermore, the 16S analysis showed strong significant differences in microbiota taxonomic composition between the two lines. Among the 617 operational taxonomic units (OTU) observed, more than 390 were differentially abundant between the two lines. Furthermore, within the 61 line, we found a difference in the microbiota taxonomic composition between the high and low Salmonella carriers, with 39 differentially abundant OTU. Using metagenome functional prediction based on 16S data, several metabolic pathways that are potentially associated to microbiota taxonomic differences (e.g. short chain fatty acids pathways) were identified between high and low carriers. CONCLUSIONS: Overall, our findings demonstrate that the caecal microbiota composition differs between genetic lines of chickens. This could be one of the reasons why the investigated lines differed in Salmonella carriage levels under experimental infection conditions.


Assuntos
Microbiota , Salmonelose Animal , Animais , Galinhas/genética , Humanos , RNA Ribossômico 16S/genética , Salmonelose Animal/genética , Salmonella enteritidis/genética
7.
Microbiol Resour Announc ; 10(38): e0069721, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34553988

RESUMO

Mycobacterium avium subsp. paratuberculosis is the etiological agent of Johne's disease in ruminants. Here, we report the annotated draft genome sequences of 142 M. avium subsp. paratuberculosis strains that were isolated from dairy cattle in France between 2014 and 2018. The genomes of these strains were sequenced using Illumina technology.

8.
NPJ Vaccines ; 6(1): 92, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294732

RESUMO

This study describes the associations between fecal microbiota and vaccine response variability in pigs, using 98 piglets vaccinated against the influenza A virus at 28 days of age (D28) with a booster at D49. Immune response to the vaccine is measured at D49, D56, D63, and D146 by serum levels of IAV-specific IgG and assays of hemagglutination inhibition (HAI). Analysis of the pre-vaccination microbiota characterized by 16S rRNA gene sequencing of fecal DNA reveals a higher vaccine response in piglets with a richer microbiota, and shows that 23 operational taxonomic units (OTUs) are differentially abundant between high and low IAV-specific IgG producers at D63. A stronger immune response is linked with OTUs assigned to the genus Prevotella and family Muribaculaceae, and a weaker response is linked with OTUs assigned to the genera Helicobacter and Escherichia-Shigella. A set of 81 OTUs accurately predicts IAV-specific IgG and HAI titer levels at all time points, highlighting early and late associations between pre-vaccination fecal microbiota composition and immune response to the vaccine.

9.
PLoS One ; 16(4): e0250655, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33905437

RESUMO

This study describes the fecal microbiota from piglets reared in different living environments during the weaning transition, and presents the characteristics of microbiota associated with good growth of piglets after weaning. Fecal samples were collected pre- (d26) and post-weaning (d35) from 288 male piglets in 16 conventional indoor commercial farms located in the West of France. The changes one week after weaning on the most abundant microbial families was roughly the same in all farms: alpha diversity increased, the relative abundance of Bacteroidaceae (-61%), Christensenellaceae (-35%), Enterobacteriaceae (-42%), and Clostridiaceae (-32%) decreased, while the relative abundance of Prevotellaceae (+143%) and Lachnospiraceae (+21%) increased. Among all the collected samples, four enterotypes that were ubiquitous in all farms were identified. They could be discriminated by their respective relative abundances of Prevotella, Faecalibacterium, Roseburia, and Lachnospira, and likely corresponded to a gradual maturational shift from pre- to post-weaning microbiota. The rearing environment influenced the frequency of enterotypes, as well as the relative abundance of 6 families at d26 (including Christensenellaceae and Lactobacillaceae), and of 21 families at d35. In all farms, piglets showing the highest relative growth rate during the first three weeks after weaning, which were characterized as more robust, had a higher relative abundance of Bacteroidetes, a lower relative abundance of Proteobacteria, and showed a greater increase in Prevotella, Coprococcus, and Lachnospira in the post-weaning period. This study revealed the presence of ubiquitous enterotypes among the farms of this study, reflecting maturational stages of microbiota from a young suckling to an older cereal-eating profile. Despite significant variation in the microbial profile between farms, piglets whose growth after weaning was less disrupted were, those who had reached the more mature phenotype characterized by Prevotella the fastest.


Assuntos
Ração Animal/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal , Envelhecimento , Animais , Bacteroidaceae/genética , Bacteroidaceae/isolamento & purificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Fazendas , Lactobacillaceae/genética , Lactobacillaceae/isolamento & purificação , Masculino , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Suínos , Desmame
10.
Front Behav Neurosci ; 14: 581296, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33312120

RESUMO

A role of the gut microbiota in psychiatric disorders is supported by a growing body of literature. The effects of a probiotic mixture of four bacterial strains were studied in two models of anxiety and depression, naturally stress-sensitive Fischer rats and Long Evans rats subjected to maternal deprivation. Rats chronically received either the probiotic mixture (1.109 CFU/day) or the vehicle. Anxiety- and depressive-like behaviors were evaluated in several tests. Brain monoamine levels and gut RNA expression of tight junction proteins (Tjp) and inflammatory markers were quantified. The gut microbiota was analyzed in feces by 16S rRNA gene sequencing. Untargeted metabolite analysis reflecting primary metabolism was performed in the cecal content and in serum. Fischer rats treated with the probiotic mixture manifested a decrease in anxiety-like behaviors, in the immobility time in the forced swimming test, as well as in levels of dopamine and its major metabolites, and those of serotonin metabolites in the hippocampus and striatum. In maternally deprived Long Evans rats treated with the probiotic mixture, the number of entries into the central area in the open-field test was increased, reflecting an anxiolytic effect. The probiotic mixture increased Tjp1 and decreased Ifnγ mRNA levels in the ileum of maternally deprived rats. In both models, probiotic supplementation changed the proportions of several Operational Taxonomic Units (OTU) in the gut microbiota, and the levels of certain cecal and serum metabolites were correlated with behavioral changes. Chronic administration of the tested probiotic mixture can therefore beneficially affect anxiety- and depressive-like behaviors in rats, possibly owing to changes in the levels of certain metabolites, such as 21-deoxycortisol, and changes in brain monoamines.

11.
Sci Rep ; 10(1): 18654, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33122748

RESUMO

Urban Aedes mosquitoes are vectors of many viruses affecting human health such as dengue, chikungunya and Zika viruses. Insecticide resistance and environmental toxicity risks hamper the effectiveness of chemical control against these mosquito vectors. Alternative control methods, such as the use of mosquito-specific entomopathogenic viruses should be explored. Numerous studies have focused on evaluating the potential of different densoviruses species as biological control agents. However, knowledge on the extent of inter- and intra-specific variations in the susceptibility of Aedes mosquitoes to infection by different densoviruses remains insufficient. In this study, we compared infection and mortality rates induced by the Aedes albopictus densovirus 2 in different strains of Aedes albopictus and Aedes aegypti mosquitoes. The two Aedes species were different in terms of susceptibility to viral infection. Under laboratory conditions, Aedes albopictus densovirus 2 appeared more virulent for the different strains of Aedes aegypti tested than for those of Aedes albopictus. In addition, we also found significant intra-specific variation in infection and mortality rates. Thus, although even if Aedes albopictus densoviruses could be powerful biocontrol agents used in the management of urban Aedes populations, our results also call into question the use of single viral isolate as biocontrol agents.


Assuntos
Aedes/virologia , Densovirus/isolamento & purificação , Aedes/crescimento & desenvolvimento , Animais , Feminino , Larva/crescimento & desenvolvimento , Masculino , Carga Viral
12.
Microorganisms ; 8(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751315

RESUMO

The gut microbiota comprises a large and diverse community of bacteria that play a significant role in swine health. Indeed, there is a tight association between the enteric immune system and the overall composition and richness of the microbiota, which is key in the induction, training and function of the host immunity, and may therefore, influence the immune response to vaccination. Using vaccination against Mycoplasma hyopneumoniae (M. hyo) as a model, we investigated the potential of early-life gut microbiota in predicting vaccine response and explored the post-vaccination dynamics of fecal microbiota at later time points. At 28 days of age (0 days post-vaccination; dpv), healthy piglets were vaccinated, and a booster vaccine was administered at 21 dpv. Blood samples were collected at 0, 21, 28, 35, and 118 dpv to measure M. hyo-specific IgG levels. Fecal samples for 16S rRNA gene amplicon sequencing were collected at 0, 21, 35, and 118 dpv. The results showed variability in antibody response among individual pigs, whilst pre-vaccination operational taxonomic units (OTUs) primarily belonging to Prevotella, [Prevotella], Anaerovibrio, and Sutterella appeared to best-predict vaccine response. Microbiota composition did not differ between the vaccinated and non-vaccinated pigs at post-vaccination time points, but the time effect was significant irrespective of the animals' vaccination status. Our study provides insight into the role of pre-vaccination gut microbiota composition in vaccine response and emphasizes the importance of studies on full metagenomes and microbial metabolites aimed at deciphering the role of specific bacteria and bacterial genes in the modulation of vaccine response.

13.
Anim Microbiome ; 2(1): 2, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33499995

RESUMO

BACKGROUND: In pig production systems, weaning is a crucial period characterized by nutritional, environmental, and social stresses. Piglets transition from a milk-based diet to a solid, more complex plant-based diet, and their gut physiology must adapt accordingly. It is well established that piglets weaned later display improved health, better wean-to-finish growth performance, and lower mortality rates. The aim of this study was to evaluate the impact of weaning age on fecal microbiota diversity and composition in piglets. Forty-eight Large White piglets were divided into 4 groups of 12 animals that were weaned at different ages: 14 days (early weaning), 21 days (a common weaning age in intensive pig farming), 28 days (idem), and 42 days (late weaning). Microbiota composition was assessed in each group by sequencing the 16S rRNA gene using fecal samples taken on the day of weaning, 7 days later, and at 60 days of age. RESULTS: In each group, there were significant differences in fecal microbiota composition before and after weaning (p < 0.05), confirming that weaning can drastically change the gut microbiota. Microbiota diversity was positively correlated with weaning age: microbial alpha diversity and richness were higher in piglets weaned at 42 days of age both on the day of weaning and 7 days later. The abundance of Faecalibacterium prausnitzii operational taxonomic units (OTUs) was also higher in piglets weaned at 42 days of age. CONCLUSIONS: Overall, these results show that late weaning increased gut microbiota diversity and the abundance of F. prausnitzii, a microorganism with positive effects in humans. Piglets might thus derive a competitive advantage from later weaning because they have more time to accumulate a higher diversity of potentially beneficial microbes prior to the stressful and risky weaning period.

14.
Sci Rep ; 8(1): 6137, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29643452

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

16.
Sci Rep ; 7(1): 11091, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894186

RESUMO

To tackle the problem of insecticide resistance, all resistance mechanisms need to be studied. This study investigated the involvement of the cuticle in pyrethroid resistance in a strain of Anopheles gambiae, MRS, free of kdr mutations. Bioassays revealed MRS to be resistant to pyrethroids and DDT, indicated by increasing knockdown times and resistance ratios. Moreover, biochemical analysis indicated that metabolic resistance based on enhanced CYP450 activity may also play a role. Insecticide penetration assays showed that there were significantly lower amounts of insecticide in the MRS strain than in the susceptible control. Analysis of the levels of the selected transcripts by qPCR showed that CYP6M2, a major pyrethroid metaboliser, CYP4G16, a gene implicated in resistance via its contribution to the biosynthesis of elevated epicuticular hydrocarbons that delay insecticide uptake, and the cuticle genes CPAP3-E and CPLCX1 were upregulated after insecticide exposure. Other metabolic (CYP6P3, GSTe2) and cuticle (CPLCG3, CPRs) genes were also constitutively upregulated. Microscopic analysis showed that the cuticle layers of the MRS strain were significantly thicker than those of the susceptible strain. This study allowed us to assess the contribution made by the cuticle and metabolic mechanisms to pyrethroid resistance in Anopheles gambiae without target-site mutations.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/metabolismo , Enzimas/metabolismo , Inativação Metabólica/efeitos dos fármacos , Proteínas de Insetos/metabolismo , Resistência a Inseticidas , Piretrinas/farmacologia , Animais , Anopheles/enzimologia , Anopheles/parasitologia , Ativação Enzimática , Enzimas/genética , Regulação da Expressão Gênica , Proteínas de Insetos/genética , Mosquitos Vetores , Nitrilas/metabolismo , Permeabilidade , Piretrinas/metabolismo
17.
Genome Announc ; 4(6)2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27908984

RESUMO

Anaplasma phagocytophilum is a zoonotic tick-borne intracellular bacterium responsible for granulocytic anaplasmosis. As it is difficult to isolate and cultivate, only 20 A. phagocytophilum genomes have been sequenced to date. Here, we present eight A. phagocytophilum genome sequences obtained using alternative approaches based on sequence capture technology.

18.
J Am Mosq Control Assoc ; 32(3): 251-253, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27802409

RESUMO

Despite an extensive literature on mosquitoes, remarkably little attention has been paid to males. Current interest in control by release of transgenic males begs attention to this bias. It is well known that males are more susceptible to insecticides than females when determined by the standard World Health Organization (WHO) bioassay, and field observations have shown a higher impact of ultra-low-volume (ULV) space sprays. It is generally assumed that these differences are due to the smaller size of males and/or greater physiological susceptibility. We compared susceptibility by WHO bioassay and by topical application. There was a significant difference between the sexes in terms of dose effect and knockdown by the WHO test, but no significant difference by weight-adjusted topical application. We conclude that greater susceptibility of males is solely a function of their size and suggest that a ULV treatment before the release of transgenic males would greatly increase their competitive ratio versus wild mosquitoes and thus their impact as a control measure.


Assuntos
Aedes/efeitos dos fármacos , Inseticidas/farmacologia , Controle de Mosquitos , Nitrilas/farmacologia , Piretrinas/farmacologia , Aedes/crescimento & desenvolvimento , Animais , Tamanho Corporal , Fatores Sexuais
19.
Parasit Vectors ; 9(1): 597, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27881181

RESUMO

BACKGROUND: Ultra-low volume (ULV) insecticidal aerosols dispensed from vehicle-mounted cold-foggers are widely considered the method of choice for control of Aedes aegypti and Ae. albopictus during outbreaks of dengue and chikungunya and, more recently, Zika. Nevertheless, their effectiveness has been poorly studied, particularly in Europe. Nearly all published studies of ULV efficacy are bio-assays based on the mortality of caged mosquitoes. In our study we preferred to monitor the direct impact of treatments on the wild mosquito populations. This study was undertaken to evaluate the efficiency of the two widely used space spraying methods to control Ae. albopictus and Ae. aegypti. METHODS: We determined the susceptibility of local Ae. albopictus to deltamethrin by two methods: topical application and the "WHO Tube Test". We used ovitraps baited with hay infusion and adult traps (B-G Sentinel) baited with a patented attractant to monitor the mosquitoes in four residential areas in Nice, southern France. The impact of deltamethrin applied from vehicle-mounted ULV fogging-machines was assessed by comparing trap results in treated vs untreated areas for 5 days before and 5 days after treatment. Four trials were conducted at the maximum permitted application rate (1 g.ha-1). We also made two small-scale tests of the impact of the same insecticide dispensed from a hand-held thermal fogger. RESULTS: Susceptibility to the insecticide was high but there was no discernable change in the oviposition rate or the catch of adult female mosquitoes, nor was there any change in the parous rate. In contrast, hand-held thermal foggers were highly effective, with more than 90% reduction of both laid eggs and females. CONCLUSIONS: We believe that direct monitoring of the wild mosquito populations gives a realistic assessment of the impact of treatments and suggest that the lack of efficacy is due to lack of interaction between the target mosquitoes and the ULV aerosol. We discuss the factors that influence the effectiveness of both methods of spraying in the context of epidemic situations.


Assuntos
Aedes/efeitos dos fármacos , Aerossóis/farmacologia , Inseticidas/farmacologia , Nitrilas/farmacologia , Piretrinas/farmacologia , Animais , Bioensaio , França , Controle de Mosquitos/métodos , Temperatura
20.
Mol Microbiol ; 96(2): 405-18, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25626518

RESUMO

The ascomycete Trichoderma reesei is an industrial producer of cellulolytic and hemicellulolytic enzymes, and serves as a prime model for their genetic regulation. Most of its (hemi-)cellulolytic enzymes are obligatorily dependent on the transcriptional activator XYR1. Here, we investigated the nucleo-cytoplasmic shuttling mechanism that transports XYR1 across the nuclear pore complex. We identified 14 karyopherins in T. reesei, of which eight were predicted to be involved in nuclear import, and produced single gene-deletion mutants of all. We found KAP8, an ortholog of Aspergillus nidulans KapI, and Saccharomyces cerevisiae Kap121/Pse1, to be essential for nuclear recruitment of GFP-XYR1 and cellulase gene expression. Transformation with the native gene rescued this effect. Transcriptomic analyses of Δkap8 revealed that under cellulase-inducing conditions 42 CAZymes, including all cellulases and hemicellulases known to be under XYR1 control, were significantly down-regulated. Δkap8 strains were capable of forming fertile fruiting bodies but exhibited strongly reduced conidiation both in light and darkness, and showed enhanced sensitivity towards abiotic stress, including high osmotic pressure, low pH and high temperature. Together, these data underscore the significance of nuclear import of XYR1 in cellulase and hemicellulase gene regulation in T. reesei, and identify KAP8 as the major karyopherin required for this process.


Assuntos
Núcleo Celular/metabolismo , Celulase/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Esporos Fúngicos/crescimento & desenvolvimento , Trichoderma/metabolismo , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/enzimologia , Núcleo Celular/genética , Celulase/metabolismo , Proteínas Fúngicas/genética , Transporte Proteico , Reprodução Assexuada , Esporos Fúngicos/enzimologia , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Trichoderma/enzimologia , Trichoderma/genética , Trichoderma/crescimento & desenvolvimento , beta Carioferinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA